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The theory of probabilistic mental models (PMM; G. Gigerenzer, U. Hoffrage, & H. Kleinbölting, 1991)
has had a major influence on the field of judgment and decision making, with the most recent important
modifications to PMM theory being the identification of several fast and frugal heuristics (G. Gigerenzer
& D. G. Goldstein, 1996). These heuristics were purported to provide psychologically plausible cognitive
process models that describe a variety of judgment behavior. In this article, the authors evaluate the
psychological plausibility of the assumptions upon which PMM were built and, consequently, the
psychological plausibility of several of the fast and frugal heuristics. The authors argue that many of
PMM theory’s assumptions are questionable, given available data, and that fast and frugal heuristics are,
in fact, psychologically implausible.
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Research on heuristics and biases has dominated behavioral
decision theory for the past several decades. This approach
characterizes decision makers as having a limited set of general
purpose cognitive heuristics that can be used to make quick and
relatively effortless decisions (Tversky & Kahneman, 1973,
1974, 1982). Although this research led to many insights con-
cerning the factors affecting judgment and decision making, it
has been criticized for a number of reasons (Dougherty, Gettys,
& Ogden, 1999; Gigerenzer, 1996). As a result, several re-
searchers have argued that the focus should shift beyond de-
scribing heuristics and their associated biases to developing
quantitatively specified cognitive process models of judgment
and decision making (Dougherty et al., 1999; Gigerenzer, Hof-
frage, & Kleinbölting, 1991).

One alternative approach that has received considerable at-
tention was born out of the theory of probabilistic mental
models (PMM; Gigerenzer et al., 1991; Gigerenzer & Gold-
stein, 1996). PMM provided a unified theory of judgment

grounded in Brunswik’s probabilistic functionalism and led to
the development of a set of fast and frugal cognitive algorithms
or heuristics (Gigerenzer & Goldstein, 1996). In contrast to the
heuristics born out of the heuristics and biases program, which
were assumed to be domain general, those proposed by Giger-
enzer and Goldstein (1996) were assumed to be content and
domain specific as well as ecologically grounded. The algo-
rithms were labeled “fast and frugal” because they presumably
required little time, knowledge, and computational ability. In
addition to proposing that these algorithms are psychologically
plausible, Gigerenzer and Goldstein (1996) illustrated that they
performed as well as or better than more complex algorithms,
such as multiple regression models.

Although the most recent instantiations of fast and frugal
heuristics have abandoned their connection to PMM theory, the
initial heuristics proposed by Gigerenzer and Goldstein (1996;
Goldstein & Gigerenzer, 2002) were built on the original PMM
theory, and many assumptions of PMM were carried over.
Hence, the aim of the present article is to examine the assump-
tions of PMM and to assess the psychological plausibility of the
fast and frugal heuristics they imply. Our criticisms are orga-
nized around four components of PMM and the fast and frugal
heuristics proposed by Gigerenzer and Goldstein (1996). First,
we argue that the automatic frequency-counter assumption
adopted by Gigerenzer and Goldstein (1996) is not well sup-
ported by the existing literature. Second, the definition of cue
validity, the foundation for the most widely studied heuristic
(Take The Best or TTB), is fundamentally flawed. Third, given
the problem with the formula for cue validity and the automatic
frequency-counter assumption, validity-guided generation is
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highly unlikely. Instead, we argue that memory retrieval pro-
cesses likely supersede cue validity as a general mechanism for
cue generation. Fourth, the recognition principle, as imple-
mented by Gigerenzer and Goldstein (1996; Goldstein & Gig-
erenzer, 2002) violates accepted principles of memory and also
ignores essential assumptions of ecological theories (of which
PMM theory is an example). We end by presenting the results
of a set of simulations comparing the recognition heuristic with
a familiarity model and a frequency-sampling model.

Description of PMM

PMM provide a framework for using probabilistic information
from the natural environment to make judgments. They are in-
voked when local mental models (LMM) cannot effectively derive
the solution for a specific judgment. In a two-alternative general
knowledge task, LMM reflect the process of retrieving specific
information directly from memory and/or obtaining it by the
process of elementary logical operations to make the judgment.

In contrast to LMM, PMM require the interplay between the
structure of the task and the structure of a person’s environment
and assume that inference about a criterion variable is based on
cues that are probabilistically related to the criterion variable.
Consider a two-alternative general knowledge question. First, a
reference class (set of objects from a person’s environment) per-
taining to both items in the task is activated. Cue validities in the
form of conditional probabilities are assumed to be based on the
relative frequencies with which cues predict the outcome variable.
The formula for cue validity is

� i � p�t�a� � t�b��ci�a� � � and ci�b� � � �, (1)

where the validity (vi) of cue i (denoted ci) on target variables
a and b, t(a) and t(b), is given by the relative frequency with
which t(a) � t(b), given that a is positive on cue i and b is
negative in reference class R. The terms t(a) and t(b) correspond
to the value of the target variable for object a and b, respec-
tively. For instance, if the task is to judge which city is more
populous on the basis of whether the city has a soccer team, t(a)
and t(b) correspond to the value of the population of City A and
City B, conditioned on all pairs of cities in which one city in the
pair has a soccer team (ci(a) � �) and one city does not (ci(b)
� �). Therefore, for items a and b, the validity of cue ci is
given by the proportion of times that the cue would discriminate
correctly between a and b. For example, if a cue has a validity
of .90, then it will correctly discriminate between a and b on
90% of the trials in which that cue can be used.

The Fast and Frugal Heuristics

Recent developments of PMM theory have focused on identi-
fying several fast and frugal heuristics. As Gigerenzer and Gold-
stein (1996) stated, these cognitive algorithms “are realizations of
the framework for modeling inferences from memory, the theory
of probabilistic mental models ” (p. 652). They elaborated on three
such algorithms: TTB, Take The Last (TTL), and minimalist. We
begin by focusing on TTB because it has received the most
attention in the literature and because it is the “basic algorithm of
the PMM framework” (Gigerenzer & Goldstein, 1996, p. 653).

Lesser space is devoted to evaluating the TTL and minimalist
algorithms.

TTB consists of a five-step algorithm, as detailed in Figure 1
(adapted from Gigerenzer & Goldstein, 1996, Figure 2). Con-
sider the decision where one must choose the more populous of
two German cities. TTB proceeds first by implementing the
recognition principle. If one of the two cities is recognized (cue
value is �) and the other is not recognized (cue value is �),
then choose the recognized city. If neither of the two cities is
recognized, then choose randomly (guess). If both cities are
recognized (both have � for the recognition cue), then proceed
to Step 2: Search for cue validities and retrieve the cue values
of the highest ranking cue from memory. Step 3 is the discrim-
ination rule: The cue discriminates if one of the cities has a
positive cue value and the other has a negative cue value or is
unknown (cue value is ‘?’). Step 4 is the cue substitution
principle. If the cue discriminates, then the search for cues stops
and the decision process proceeds to Step 5. If the cue does not
discriminate, then the decision maker is assumed to return to
Step 2 and selects the next best cue. Step 5 is the maximizing
rule for choice, which says that the decision maker should
choose whichever city has the positive cue value. If none of the
cues discriminate, then an alternative is chosen at random.

TTB makes four important assumptions: (a) Cue validities are
prestored in the form of co-occurrence frequencies, (b) participants
start by determining whether the choice can be made by recogni-
tion—if one alternative is recognized and the other is not, then
choose the alternative that is recognized, (c) cues are ordered
hierarchically from most to least predictive, and (d) cues are
searched sequentially starting with the most predictive. In contrast
to TTB, TTL assumes cues are generated sequentially from the
most recently used to the least recently used. Thus, TTL does not
require a hierarchical ordering of cue validities; it needs only a
record of which cues discriminated in the past. Finally, the mini-
malist algorithm assumes cues are generated randomly until one is
found that discriminates. Like TTL, minimalist does not require a
hierarchy of cues; however, unlike TTL, it does not require a
memory of past cues.

The Psychological Plausibility of PMM

As with any theory, the assumptions underlying PMM can be
categorized as either primary or auxiliary. Primary assumptions are
those that are foundational to the theory and central to its func-
tioning. In contrast, auxiliary assumptions are those that are made
out of convenience and are necessary for the implementation of a
model but not foundational to the theory. In this section, we briefly
discuss the primary assumptions of PMM and outline potential
problems of these assumptions.

Automatic Frequency Counter

PMM and the fast and frugal algorithms assume that cue valid-
ities are based on a frequency-counter process, such as that pro-
posed by Hasher and Zacks (1979). The basic idea was that
environmental events or objects are registered in memory akin to
an event counter such that whenever the same event is encoun-
tered, frequency information is incremented. One by-product of
the frequency-counter process is that frequency encoding is as-
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sumed to be relatively accurate, regardless of the amount of
attention devoted to the event.

How central is the frequency-counter mechanism to PMM the-
ory? Gigerenzer et al. (1991, p. 510) seemed to be noncommittal
with respect to the exact nature of the frequency mechanism, for
they stated,

whatever mechanism of frequency encoding, we use the following
assumption for deriving our predictions: If subjects had repeated
experience with a reference class, a target variable, and cues in their
environment, we assume that cue validities correspond to the ecolog-
ical validities.

This statement implies that the frequency-counter assumption is
auxiliary. However, because the frequency-counter assumption is
necessary (though not sufficient) for the functioning of some of the

mechanisms proposed by PMM, such as the TTB algorithm (dis-
cussed below), it constitutes a primary assumption.

At issue is the distinction between online and retrospective
models of frequency estimation. Online models assume that
frequency information is updated dynamically over time. Ac-
cordingly, judgments of frequency merely require a read out
of the prestored frequency. Hasher and Zacks’s (1979)
frequency-counter model is one instantiation of an online
model. Retrospective models, such as Hintzman’s (1988)
Minerva 2 model and Brown’s (1995) enumeration model, do
not record frequency of occurrence per se. Rather, frequency is
inferred from the representation of individual events stored in
memory. Thus, frequency of occurrence is determined retro-
spectively by mapping a memory variable (e.g., familiarity)
onto a response scale.

Start

Recognition
(step 1) 

Choose the
alternative to
which the cue 

points
(step 5) 

Guess
Other cues 

known?

Choose the best
cue

(step 2)

+  - 
or

+  ?
(step 3) 

 -  + - -

+ + 

No

Yes

Cue substitution
(step 4)

Yes
No

Figure 1. Flow diagram for the Take The Best heuristic. Adapted from “Reasoning the Fast and Frugal Way:
Models of Bounded Reality,” by G. Gigerenzer and D. G. Goldstein, 1996, Psychological Review, 103, p. 653.
Copyright 1996 by the American Psychological Association.
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Why do PMM require an online model? The assumption that
cues are accessed according to their validity necessitates that the
cue validities are precomputed and stored in memory. If cue
validities are not prestored, then the TTB algorithm cannot work
because a hierarchy of cue validities would not exist. Given this as
the case, the event-counter assumption is central to the functioning
of the model, and data arguing against this assumption, which are
quite widespread, pose serious problems for the theory (see
Brown, 1995, 1997; Greene, 1986, 1988; Hanson & Hirst, 1988;
Hintzman, 1988; Naveh-Benjamin & Jonides, 1986).1

In the absence of a frequency-counter process, how would one
establish a cue hierarchy? Retrospective models require that cue
validities are computed and ordered at the time of judgment:
Participants would have to generate a list of cues, compute their
validities, and order the list of cues by their validities before any
of the cues could be tested. Such a process would be computa-
tionally intensive. Moreover, the assumption that cues are gener-
ated before assessing validity leads to circularity in the definition
of TTB: Generation cannot be based on cue validity unless cue
validity information is available prior to generation.

The event-counter mechanism is implausible. However, even if
we accept the event-counter assumption, there are still problems
with its implementation within PMM and TTB. One problem
concerns the complexity of computing cue validities. Consider the
classic city-size problem often used to demonstrate TTB: “Which
city is larger? Bonn or Munich?” Gigerenzer and Goldstein (1996)
demonstrated TTB within an ecology of 83 cities and nine cues.
The computation of cue validity within this ecology would require
30,627 pairwise comparisons just to establish the cue validity
hierarchy for predicting city size (see also Juslin & Persson, 2002).
However, because any particular predictor cue can also serve as
the criterion (e.g., one might want to use city size to predict which
city is likely to have monuments), it would require J(J � 1)/2 �
K(K � 1)/2 pairwise comparisons, where J is the number of cues
and criteria in the matrix and K is the number of objects (e.g.,
cities) in the reference class. For the city-size task with J � 10 (9
cues and 1 criterion) and K � 83 cities, this would entail 153,135
pairwise comparisons. In principle, there are no limits on the
number of potential predictor and criterion variables (i.e., there are
many more than nine cues that one might use to predict city size
and many criterion variables of interest other than city size).
Moreover, the ordering of the cues would be different depending
on the criterion variable of interest, and they would need updates
periodically in response to changes in the reference class, the
addition of new cues to the ecology, and changes in one’s ecolog-
ical experience. These updates are necessary if TTB is to maintain
its ecological adaptability.

These computational complexities aside, a much more funda-
mental problem lies in the definition of cue validity itself. Namely,
the definition requires complementary knowledge of events that
are present and events that are absent from the environment.

The Definition of Cue Validity and Reliance on Missing
Information

Cue validities are assumed to be based on co-occurrences de-
rived from a set of pairwise comparisons between objects within
the reference class. At this point, it is necessary to highlight three
assumptions of PMM. First, as an ecological theory, PMM theory

assumes that people learn probabilistic relationships in the envi-
ronment through ecological sampling, that is, randomly sampling
from the ecology. The basic idea is that individuals learn statistical
relationships in the environment merely by interacting in that
environment. More experience is assumed to lead to cognitive
adjustment, such that cognitive representations more accurately
reflect the statistical structure of the environment. These are foun-
dational assumptions of ecological psychology, which we view as
relatively uncontroversial.

Second, the idea of ecological sampling and the computation of
cue validity necessitates that one identify a well-defined reference
class. Although this assumption may well be instantiated at the
individual subject level, for theory-testing purposes, one needs to
define a priori the reference class over which cue validities are
computed so that predictions can be made and proper experimental
tests carried out.

A third assumption, which builds on the first two, relates di-
rectly to the definition of cue validity. Equation 1 can be restated
as

p�t�a� � t�b��ci�a� � � and ci�b� � � �

�
F�t�a� � t�b��ci�a� � � � ci�b� � � �

F�t�a� � t�b��ci�a� � � � ci�b� � � �
� F�t�a� � t�b��ci�a� � � � ci�b� � � �

, (2)

where F corresponds to the count of the conditional event. Equa-
tion 2 is a straightforward conditional probability that can be
computed if one has knowledge of both the positive and the
negative cue values, as could be obtained by referencing an alma-
nac.

Figure 2 presents a graphical depiction of Equation 2 but ex-
pressed in terms of state tables. The tables consist of frequency
counts derived by making all K(K � 1)/2 pairwise comparisons of
a set of objects (e.g., cities) within a reference class. These pair-
wise comparisons can be divided into two sets: those for which
t(a) � t(b) (the left box) and those for which t(a) � t(b) (the right
box). Within each set, we can further compute the frequency for
which (cue i � � for object a) � (cue i � � for object b), (cue
i � � for object a) � (cue i � � for object b), and so forth. The
relevant cells for computing cue validity are given by Cells B and
B	: �i � p�t�a� � t�b��ci�a� � � and ci�b� � � � �
B/(B � B	). In words, Cell B corresponds to all pairs of cities for
which the larger city has a monument and the smaller city does not,
and Cell B	 corresponds to all pairs of cities for which the smaller
of the two has a monument and the larger one does not.

Implementation of Equation 2 within the context of a cognitive
model requires several key assumptions. First, the formula is
assumed to operate on the decision maker’s memory representa-
tion as constructed through ecological sampling, not information
gleaned from an almanac. Thus, any implementation of the for-
mula needs to take into account the psychological and sampling
constraints of the memory system and how these cues might be
represented mentally. Second, as illustrated in Figure 2, cue va-

1 It is important to note also that the application in PMM of the
frequency-counter model operates on co-occurrences, not single events,
where the co-occurrences involve missing information. We return to this
point in our discussion of the definition of cue validity.
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lidities are derived from the co-occurrence of objects with and
without the cue (e.g., pairs of cities, where one city has a monu-
ment and the other does not). Finally, because cue values with
minus signs correspond to the absence of the cue with an object in
the environment, the definition assumes that people can register
the co-occurrence of missing information. For example, if a city
does not have any monuments, then for the purposes of computing
cue validity, one would need to register the co-occurrence of the
city and that absence. The assumption that we maintain a record of
missing information that can be fed into a validity calculation is
tantamount to assuming that we encode information in memory
that is absent from the environment. As an example, you probably
did not encode that the word “and” was not used in the prior
sentence, nor were the words “xylophone,” “pepper,” “you,” or
millions of other words or nonwords. Certainly it is possible to
build a memory representation that can register the presence of
events (and even the co-occurrence of events that are present) in
the environment, but we see no way that a memory representation
can register the absence of information, let alone infer a co-
occurrence matrix based on the presence and absence of informa-
tion. However, registration in memory of cues absent from the
environment is as necessary as the registration of cues present, and
both present and absent cues are afforded the same information
value. As a litmus test, consider building an artificial intelligent
agent that could learn cue validities through unsupervised learning
by interacting in its environment. How would this agent perceive
and register in memory the absence of information in its environ-
ment?

Not only does the registration of nonoccurrences fail the test of
logic, but considerable evidence within both the probability learn-
ing (Hearst, 1991) and the memory (Brewer & Treyens, 1981)
literatures also indicates that people generally are poor at recog-
nizing information absence. The inability to encode the co-
occurrence of two events, where one event is present and the other
is absent, is the basis of the feature positive effect—the empirical
finding that people and other animals generally are poor at detect-
ing the absence of information (Lea, 1974). Indeed, this result is
highly robust, even when such absences are predictive of an
outcome variable, and has been argued to be fundamental to
behaviors ranging from discrimination learning to concept learning

to decision making (for an excellent review, see Newman, Wolff,
& Hearst, 1980).2 Although people can learn correlations between
events when information is explicitly presented to them, work on
the feature positive effect indicates that participants fail to learn in
probability learning tasks when it is the absences (as opposed to
the information that is present) that are predictive of the criterion
variable.

Generation of Cues

The three algorithms outlined by Gigerenzer and Goldstein
(1996), TTB, TTL, and minimalist, all assume that cues are gen-
erated from memory. The first of these, TTB, assumes that the
process involves sampling from a hierarchy of cue validities start-
ing with the cue that has the highest validity. As argued above, we
view the notion of a prestored hierarchy as implausible.

Accepting, for the moment, the possibility that one has access to
missing information and can compute cue validity, how might
TTB be implemented in the absence of a prestored hierarchy? One
possibility that does not necessitate a cue hierarchy but still re-
quires that cue validity be computed according to Equation 1
involves (a) generating a set of candidate cues from long-term
memory, (b) computing the validities of each cue in the candidate
set, and (c) selecting the cues from most to least valid within the
candidate set. However, this set of processes is computationally
intensive and, by necessity, must be governed by domain-general
memory retrieval variables: The candidate set would still have to
be driven by retrieval variables.

Several issues arise within the context of cue generation and its
relationship to memory retrieval processes. When does one decide
to terminate the cue generation process? Is the process influenced
by primacy, recency, and/or other memorial or motivational fac-
tors (cf. Dougherty & Harbison, in press)? Gigerenzer et al. (1991)
addressed the former problem by stating that cue generation can be
terminated after only one cue is generated that adequately discrim-
inates between task items. Certainly it seems plausible that one
would terminate cue generation after generating a discriminating
cue, but the task goal, in particular with TTB, is to choose the cue
with the highest validity because it has the highest likelihood of
leading to a correct judgment. However, if only one cue is gener-
ated, then how does one know that it has the highest cue validity?
Again, such a position requires that the decision maker maintain a
hierarchy of cue validities that can be generated from best to worst.

There are many alternative mechanisms that might guide (or
influence) cue generation. For example, drawing on memory the-
ory, one might hypothesize that the order in which cues are
generated is related to how frequently they occur in one’s envi-
ronment (see work on the word-frequency effect; Gregg, 1976),

2 Note that our criticism of the inability to use missing information is
specific to the computation of cue validity and not to whether people use
binary cues as the basis of judgment. People may well use the presence or
absence of cues as the basis of judgment, but we argue that using validity
as the basis of cue choice is implausible because of its reliance on missing
information.

t(a) > t(b) 

Value of Cue i on 
object b 

+ -

+ A BValue of 
cue i on 
object a 

- C D

t(a)  t(b) 
Value of Cue i on 

object b 
+ -

+ A BValue of 
cue i on 
object a 

- C D

)|)()(( bcand   acbtatpv iii = B/(B+B )

Figure 2. State tables illustrating the input required for computing cue
validity. Cells in the table represent the co-occurrence of the cue’s presence
(denoted as �) and absence (denoted as �) in the environment. For
example, Cells A and A	 correspond to co-occurrences of cue i that is
present for both object a and object b. Cells B, B	, C, and C	 correspond
to co-occurrences where a cue is present for one object but absent for the
other object. Cells D and D	 correspond to the co-occurrence of cues that
were absent for both objects a and b in the pairwise comparisons. The
equation illustrates the relevant cells for computing cue validity.
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how easily they can be brought to mind, or other memory retrieval
variables (Koriat, 1993).3

How does one reconcile data illustrating that participants gen-
erate cues from best to worst if, as we argue, the hierarchy cannot
be constructed? In some empirical studies cited as evidence for
TTB, participants were explicitly told the cue validities or pro-
vided with hints regarding which cues were best (e.g., Bröder,
2000, 2002; Bröder & Schiffer, 2003; B. R. Newell, Rakow,
Weston, & Shanks, 2004; Rieskamp & Hoffrage, 1999; Rieskamp
& Otto, 2006). Such tasks do not provide evidence that participants
can learn cue validities through experience or that they construct
the cue hierarchy. Rather, they reflect one’s ability to remember
which cues the experimenter told or hinted to him or her were good
cues. Although some studies have required participants to learn
cue validities through experience, no attempt is made to control for
the differential retrievability of the cues. It is possible that cue
validity in these studies is correlated with cue accessibility or
retrievability. Although this possibility offers an intriguing con-
nection between cue generation processes and models of memory,
it suggests that valid tests of TTB require that one explicitly
control for memory retrieval variables. Moreover, it suggests that
more emphasis needs to be placed on understanding the memory-
theoretic alternatives to validity-guided cue generation.

TTL and minimalist fare better than TTB in that neither requires
the cue hierarchy. However, problems persist, as both still ignore
basic retrieval processes. For example, TTL assumes a sequential
search of cues based on past use: The rule is to choose the cue that
discriminated at Time t � 1, and if that does not discriminate, then
choose the cue that discriminated at Time t – 2, and so forth.
Although TTL capitalizes on recency effects, it ignores the fact
that the retrieval of cues will become more difficult (and less
successful) the longer one has to search for a discriminating cue.
Moreover, implementation of TTL is conditioned on a prior cue
selection algorithm, such as TTB, minimalist, or even a prior
implementation of TTL. Minimalist is the simplest of the three
algorithms proposed by Gigerenzer and Goldstein (1996), as it
proposes that cue generation is random. However, as with TTB
and TTL, minimalist ignores memory retrieval variables. Minimal-
ist is particularly problematic, in the sense that randomness cannot
be empirically validated.

Thus far, we have argued three main points: (a) The frequency-
counter mechanism is implausible, (b) the formula for cue validity
cannot be implemented cognitively both because it is computa-
tionally intensive and because it requires access to missing infor-
mation, and (c) cue generation is likely driven by memory retrieval
processes, not cue validity. We now turn our attention to the
recognition heuristic and Gigerenzer and Goldstein’s (1996; Gold-
stein & Gigerenzer, 2002) implementation of TTB.

Recognition Principle

A major component of TTB is the recognition principle, which
apparently accounts for a fair number of judgments within TTB
(Goldstein & Gigerenzer, 1999; Goldstein & Gigerenzer, 2002).
We question the validity of the recognition heuristic, as imple-
mented in Goldstein and Gigerenzer (2002), on three grounds.4

1. The recognition heuristic treats recognition as an all-or-
none process, which is counter to the literature on rec-
ognition memory.

2. Their implementation of the recognition heuristic model
failed to incorporate the assumption of ecological sam-
pling—a foundational assumption of ecological theories
and one that is explicitly embodied in PMM.

3. They claimed that the so-called “less-is-more” effect
arises from an increase in knowledge. However, as we
demonstrate below, there is at least one alternative inter-
pretation of their experimental data that does not imply
that too much knowledge is bad.

All-or-none recognition. Goldstein and Gigerenzer (2002;
Gigerenzer & Goldstein, 1996) assumed that recognition is all or
none. Specifically, they stated, “Thus, with the term recognition,
we divide the world into the novel and the previously experienced”
(Goldstein & Gigerenzer, 2002, p 77). Moreover, they explicitly
separate their use of the term “recognition” from the concepts of
familiarity and availability:

Unlike availability, the recognition heuristic does not address com-
parisons between items in memory, but rather the difference between
items in and out of memory (Goldstein, 1997). The term familiarity is
typically used in the literature to denote the degree of knowledge (or
amount of experience) a person has of a task or object. The recogni-
tion heuristic, in contrast, treats recognition as a binary, all-or-none
distinction; further knowledge is irrelevant. (Goldstein & Gigerenzer,
2002, p. 77)

Inspection of the simulations implemented by Gigerenzer and
Goldstein (1996) and Goldstein and Gigerenzer (2002) are consis-
tent with the interpretation that recognition is all or none. This
view contrasts with most current theories, which assume recogni-
tion is based on a continuous underlying memory variable, often
referred to as “memory strength” or familiarity. In most memory
experiments, dichotomizing the memory variable works well be-
cause participants typically are presented with single-item presen-
tation (i.e., they are not making a choice of which of two items is
more familiar but rather whether a single item exceeds the thresh-
old). However, for any single recognition memory judgment in-
volving nonnovel stimuli, even items not studied on a study trial
will elicit some level of familiarity (hence, false alarms often are
observed). The task for the participant in a memory experiment
therefore becomes one of deciding whether the feeling of famil-
iarity can be attributed to the recent exposure of the stimulus on the
study list or to having been exposed to the item prior to the

3 There is ample empirical evidence across a variety of tasks that the
cues people use in forming judgments are partly influenced by memory
retrieval variables (Adelman, Bresnick, Christian, Gualtieri, & Minionis,
1997; Anderson & Norman, 1964; Chapman, Bergus, & Elstein, 1996;
Hoch, 1984; Hogarth & Einhorn, 1992).

4 B. R. Newell and Fernandez (2006; see also B. R. Newell & Shanks,
2004) showed that the recognition heuristic is sometimes used in conjunc-
tion with other cues in a compensatory fashion. Thus, the assumption that
the recognition heuristic is independent of cue use in the TTB heuristic
may be unwarranted. In addition, we argue that one’s knowledge of
environmental cues likely is not independent of the number of objects one
recognizes. That is, participants who happen to know a lot of cities would
also presumably know a lot about those cities (i.e., they would be able to
sample cues with higher validities).
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experiment: Is the familiarity high enough to decide that it is
“old”?

In contrast, when presented with an n-alternative choice task,
the task becomes one of deciding which alternative has the highest
familiarity, not whether a single item’s familiarity exceeds a
threshold (Nosofsky, 1992). In decision tasks such as those used
by Gigerenzer and colleagues (e.g., city size; see, e.g., Gigerenzer
& Goldstein, 1996; Goldstein & Gigerenzer, 2002), there exists no
explicit learning within the experiment. Therefore, any recognition
decision is based on whatever information was learned naturalis-
tically prior to the experiment: The task does not require the
decision maker to make an attribution of source. This is problem-
atic for the recognition principle because it means that any pair of
alternatives in a two-alternative (or greater) forced-choice task in
which both alternatives elicit a feeling of familiarity will not be
solvable by the recognition principle: By definition, the recogni-
tion principle can be triggered only when one item is recognized
and the other is not.

We suspect that recognition memory processes can be used in a
much wider number of circumstances, even when participants
recognize both alternatives. In this case, choice can be based on
whichever alternative is most familiar (a continuous variable)
rather than the all-or-none process proposed by Gigerenzer and
Goldstein (1996).5 Characterizing the recognition principle in
terms of the underlying continuous variable and using memory
models has a number of advantages. First, it allows us to describe
the underlying memory processes and to derive novel predictions
regarding decision-making behavior (see Dougherty, 2001;
Dougherty et al., 1999; Juslin & Persson, 2002). Second, it allows
us to test the boundary conditions of seemingly nonintuitive pre-
dictions, such as the less-is-more effect (e.g., Pleskac, 2007), and
to elucidate alternative accounts of these effects. In our case, we
show that the data supporting the seemingly nonintuitive predic-
tion that less knowledge leads to better inference can be accounted
for by a simpler alternative account.

Where is the ecology? PMM and the fast and frugal heuristics
embody elements of ecological psychology and, as such, assume
that the internal cognitive representation is based on sampling
information from one’s environment. Presumably, the more expe-
rience one has within a particular ecology, the better the internal
representation will reflect the ecological structure (Juslin, Olsson,
& Bjorkman, 1997). As stated previously, we agree with this
assumption but wonder why the authors did not incorporate it into
their simulations of the recognition heuristic.

Gigerenzer and Goldstein (1996; Goldstein & Gigerenzer, 2002)
illustrated that University of Chicago students’ recognition of
German cities was correlated with number of newspaper citations
in the Chicago Tribune (r � .79) and that the number of newspaper
citations was correlated with city population (r � .70). Goldstein
and Gigerenzer (2002) used these correlation statistics to support
the assumption that environmental mediators can be used as the
basis of inference. We agree that mediators can be used as the basis
of inference but argue that the mediator, rather than the recognition
data, should be the basis of modeling.

Goldstein and Gigerenzer (2002) implemented their model by
relying on the recognition data rather than on newspaper citations
and, in so doing, sidestepped an important assumption of ecolog-
ical theories. In their simulation, Goldstein and Gigerenzer used a
Guttman scale to rank order German cities from most recognized

to least recognized and entered cities into the simulation according
to this rank ordering.6 After each city was entered, the model
computed the number of correct inferences that would be made if
relying on recognition. If neither city was recognized, then the
model chose randomly between the cities; if one city was recog-
nized but the other one was not, then the model chose the recog-
nized city as the largest; and if both cities were recognized, then
the model implemented the TTB strategy with knowledge validi-
ties manipulated from .5 to .9. Using these simulations, Goldstein
and Gigerenzer demonstrated what they refer to as the less-is-more
effect, where more knowledge purportedly led to poorer perfor-
mance. This result is illustrated as an inverted U-shaped function
between number of cities recognized and the probability of choos-
ing the city with the highest population. Peak accuracy is achieved
when about 50% of the cities are recognized, so long as recogni-
tion validity is greater than the knowledge validity. Performance
begins to decline as the percentage of cities recognized increases
from about 50% to 100%. Thus, according to Goldstein and
Gigerenzer, the more cities one knows, the less applicable the
recognition heuristic becomes and (if the knowledge validity is
less than the validity of recognition heuristic) accuracy de-
clines—a less-is-more prediction. As empirical support for the
less-is-more prediction, they demonstrated that American students
are more accurate at judging the size of German cities (Mdn �
73% correct) than the size of American cities (Mdn � 71%
correct), and German students are more accurate at judging Amer-
ican cities than German cities.

We take issue with Goldstein and Gigerenzer’s (2002) imple-
mentation of the recognition heuristic. First, they treated partici-
pants from different ecologies as points on the same curve, as
exemplified by their use of the three-sister analogy and its com-
parison to American students’ estimates of American and German
cities. The analogy is set up by assuming that three sisters differ on
the amount of knowledge they have about various cities: The
youngest has little knowledge, the middle sister has moderate
knowledge, and the oldest sister has a high amount of knowledge.
They then argued that the sister with a lot of knowledge would
perform less well than the sister with moderate knowledge because
she cannot implement the recognition heuristic. Although Gold-
stein and Gigerenzer (2002) pointed out that German and Ameri-
can students belong to different ecologies and that German and
American cities are distinct reference classes (see Goldstein &
Gigerenzer, 2002, p. 83), their simulations treat American and

5 One could suppose that the recognition heuristic operates on a contin-
uous underlying memory variable, where the participant makes two single-
item recognition decisions to determine whether the activation of either or
both alternatives exceeds a threshold criterion. However, this type of
mechanism necessitates that the recognition heuristic be conceptualized
within the context of a threshold model, such as signal-detection theory,
where the contributions of d	, criterion setting, and experience can be
explicitly modeled (see Pleskac, 2007).

6 Of importance, Nosofsky (1992) showed that one cannot infer
n-alternative choice data from single-item recognition data. That is, there is
empirical evidence that attentional processes and the decision rule differ
between n-alternative and single-item recognition tasks. Thus, it seems
unjustifiable for Goldstein and Gigerenzer (2002) to use the single-item
recognition test as a measure of the contribution of recognition in the
n-alternative task.
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German students as if they are analogous to the middle and oldest
sisters. Because American students have more knowledge of
American cities than of German cities, their judgments of Amer-
ican cities are analogous to those of the oldest sister whereas their
judgments of German cities are analogous to those of the middle
sister. By consequence, American students are expected to make
better inferences for German cities than for American cities. This
same logic is applied in reasoning that German students should
predict American cities more accurately than should American
students and vice versa. Indeed, Gigerenzer and Goldstein (1996)
reported such results. When conceptualized within the context of
the three-sister analogy, these findings appear to support the less-
is-more prediction.

However, there are several problems with interpreting these data
as evidence of a less-is-more effect. First, the recognition heuristic
predicts a nonmonotonic relationship between number of cities
recognized and proportion correct. Thus, a valid test of the model
requires a minimum of three data points.

The second problem is that the three-sister analogy implies a single
reference class within a single ecology. However, the comparison of
German and American students requires that we model two ecologies:
one corresponding to German newspapers and one corresponding to
American newspapers (presumably, Germans read German newspa-
pers and Americans read American newspapers). In addition, there are
two reference classes within each ecology: newspaper citations for
German cities and newspaper citations for American cities. Thus, to
compare predictions for Americans versus Germans judging Ameri-
can cities, we need distinct accuracy curves constructed from German
and American newspaper citations about American cities. In a similar
vein, comparing American students’ inferences of American and
German cities implies one ecology but two reference classes: The
ecology is the American newspaper database, and the two reference
classes are citation rates of German and American cities, respectively.

Inherent in our criticism of the recognition principle is the
difficulty of identifying the reference class over which cues are
computed. The data cited by Goldstein and Gigerenzer (2002) in
support of the less-is-more effect actually imply four separate
accuracy curves corresponding to the crossing of ecologies (Amer-
ican newspapers and German newspapers) with reference classes
(German cities and American cities). This is illustrated in Table 1.
Clearly, German and American students must be modeled by
different ecologies (rows in Table 1), and, arguably, there needs to
be separate reference classes for American and German cities
(columns in Table 1). Model predictions need to be derived by
comparing different combinations of ecologies and reference
classes. The three-sister analogy pertains to how much experience
one has with objects within a single reference class in a single
ecology and cannot be extended to comparing judgments in dif-
ferent ecologies and/or reference classes. In essence, the proper

test of the recognition model involves three sisters with different
levels of knowledge all raised in the same ecology making infer-
ences about objects within the same reference class. To our knowl-
edge, no such data has been collected to test this prediction.

A third criticism is that the simulation methodology used by
Gigerenzer and Goldstein (1996; Goldstein & Gigerenzer, 2002)
ignores ecological sampling. If we take seriously the assumption of
ecological sampling, then simulations of the recognition heuristic
should be based on the mediating variable of newspaper citations,
not the recognition performance of participants. Given this as the
case, if we ask American students to judge American cities and
German cities, then the simulation model needs to be run twice—
once using the citations of the American cities and once using the
citations of German cities, where citation frequencies are tabulated
from an American database. Of importance, the ecological sam-
pling assumption entails sampling processes. Thus, in modeling
the recognition heuristic, knowledge of city names should be
assumed to arise from a sampling process, where city names are
sampled from the mediator (the distribution of newspaper cita-
tions) and where the sample size can be varied from 1 to N.

Finally, to infer a less-is-more effect within this paradigm, the
ecological correlation between newspaper citations and German
city size needs to be identical to the ecological correlation between
newspaper citations and American city size. Note that we found
this not to be the case for the newspaper citation rates of German
and American cities. We evaluated the ecological correlations
between city population and citation frequency of the 83 largest
German cities and the 83 largest American cities in the Chicago
Tribune from 1985 to 1997 (the database and time period used by
Goldstein & Gigerenzer, 2002). The Kendal’s 
 correlation was .50
for the German cities and .39 for the American cities.7 If the
correlations between the environmental mediators and the criterion
are not equal, any differences in accuracy could be the result of
ecological structure and not experience or increases in knowledge
of cities. In fact, as we show through simulations, one can account
for the finding that Americans make slightly less accurate infer-
ences regarding the population of American cities than German
cities without assuming differences in experience, number of rec-
ognized cities, or differences in cue knowledge.

Three questions naturally suggest themselves from the above
discussion. First, do the main predictions of the recognition heu-
ristic hold when one allows recognition knowledge to be deter-
mined by a sampling process? Second, does the recognition heu-
ristic discriminate between different ecologies (i.e., different
distributions of citation frequencies)? Third, can one develop an

7 The Pearson correlation between the citation frequencies with actual
population was .85 for the German cities and .38 for the American cities.

Table 1
Ecologies and Reference Classes Operating in the City-Size Task From Goldstein and Gigerenzer (2002)

Ecology

Reference class

German cities American cities

German students German students’ inferences about German cities German students’ inferences about American cities
American students American students’ inferences about German cities American students’ inferences about American cities
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alternative model that can predict the finding that Americans are
more accurate judging German cities compared with American
cities? We propose an alternative model below that does not
require that one accept the idea that too much knowledge is bad.

Contrasting the Recognition Heuristic With a Familiarity
Model

To address these three questions, we implemented three models:
the original recognition heuristic model, a familiarity-based model,
and a frequency model. Our simulations compare predictions in the
city-size task for American students judging American and Ger-
man city size (bottom row in Table 1).

Our implementation of the recognition heuristic differed some-
what from that of Goldstein and Gigerenzer (2002) but is consis-
tent with the underlying assumptions of PMM. Rather than feed
the city names into the model according to the rank order in which
they were recognized in the single-item recognition task, we de-
termined which cities were recognized by randomly sampling
(with replacement) from the distribution of newspaper citations
(cf. Schooler & Hertwig, 2005). Because Berlin has the highest
citation rate, it has the highest probability of being sampled. We
modeled two sampling distributions on the basis of newspaper
citations in the Chicago Tribune, one representing the citations for
the 83 largest German cities and the other representing the cita-
tions for the 83 largest American cities. We sampled cities accord-
ing to the actual environmental ratios as represented in the Chi-
cago Tribune, where the ratio of American to German city
citations was 226:1; for every one German city mentioned in the
newspaper database, 226 American cities were mentioned. We
varied the sample size across 18 levels from N � 1 to infinity. It
is important to note that in this model, the total sample size
consists of 226 times more American cities than German cities
(e.g., for N � 1,135,000, there are 5,000 German city names and
1,130,000 American city names in the sample). Thus, with N � 1,
the model would have recognition knowledge of only one city.
With N � 10, the model would sample 10 city names with
replacement and therefore could have knowledge of anywhere
from 1 (if 10 instances of one city were sampled) to 10 (if 10
different cities were sampled) cities. The probability that a partic-
ular city is sampled is determined by the distribution of newspaper
citations.

So that we could capture the all-or-none nature of the recogni-
tion heuristic, the model did not distinguish between cities that
were sampled once compared with more than once. Thus, if the
sample included 100 instances of Berlin and 1 instance of Essen,
both were modeled as being recognized. It is important to note that
this process ignores the metric properties of the sampling distri-
bution. As with Goldstein and Gigerenzer’s (2002) implementa-
tion, we allowed the recognition heuristic to give way to TTB
when both cities were recognized. The knowledge validity (de-
noted as B in Figure 3) was varied across two levels (B � 0.6 and
B � 0.85). B corresponds to the probability of choosing the correct
alternative given that the model recognizes both alternatives. Note
that the probability of recognizing both cities increases as sample
size increases. Thus, the recognition heuristic would become less
applicable as experience within the environment increases.

The choice rule for deciding which of two cities is most popu-
lous was as follows: (a) If no cities are recognized, then choose

randomly; (b) if one city is recognized, then choose the city that is
recognized; and (c) if both cities are recognized, then implement
TTB and choose whichever city the cue points to.

Our implementation of the familiarity model involved the ap-
plication of the Minerva 2 memory model (Hintzman, 1988). We
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Figure 3. Predicted proportion correct when the reference class is defined
on the basis of sample size (83 largest cities) for the three models: (a) the
recognition � Take The Best model, (b) the familiarity model, and (c) the
frequency model. Dashed lines in Panel A correspond to simulation results
when knowledge validity B � .85; solid lines correspond to simulations
when the knowledge validity B � .60. USA � United States of America
(Americans); GER � Germany (Germans); P � proportion.
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adopted the same sampling assumptions as were adopted for the
recognition heuristic. However, rather than representing sampled
items as a binary variable, the model encoded as many traces of the
city as were in the sample (each trace was represented as a 15
element vector). Thus, if 100 instances of Berlin and 1 instance of
Essen were included in the sample, we assumed that 100 traces of
Berlin and only 1 trace of Essen were stored in memory. Encoding
was varied across four levels of L (L � .25, .50, .75, and 1.0),
where L corresponds to the proportion of features in the environ-
mental event that are retained in the corresponding memory trace.
As all four values of L produced the same ordinal pattern, we
report only the simulation results for L � 1.0 (the only difference
is how quickly the familiarity model reaches asymptotic perfor-
mance). At test, the model compared the echo intensity (as deter-
mined by Minerva 2’s global matching process; see Hintzman,
1988) of all pairs of cities. The rule used for deciding which of two
cities was larger was as follows: Choose the city with the largest
echo intensity. If two cities had the same echo intensities, then the
model chose at random between the two cities (ties occur relatively
infrequently because echo intensity is a continuous variable).8

Finally, we also implemented a frequency model that embodied
all the properties of the familiarity model but operated on the raw
frequencies. The choice rule in this case was to choose the alter-
native with the higher frequency in memory. As an aside, this
model most closely resembles an automatic frequency-counter
process, where the frequencies were learned through ecological
sampling.9 All other details of the simulations were identical to
those for the recognition heuristic. In fact, the models were im-
plemented in tandem so that the computations involved for the
familiarity and frequency models were based on exactly the same
sample of traces as the recognition heuristic for each simulated
participant. For all three models, we ran 50 simulated participants
for each sample size, with each simulated participant making
K(K � 1)/2 pairwise comparisons, where K is the number of cities
in the reference class.

Three points are important at this juncture. First, only the
familiarity and frequency models preserve the metric properties of
the ecology (i.e., the sample probability distribution approaches
the population probability distribution as N approaches infinity).
The only sensitivity to the ecology afforded by the recognition
heuristic comes about through the sampling process.10 However, it
is important to note that the recognition heuristic’s sensitivity to
the ecology disappears with increases in sample size: As N in-
creases, the probability that all cities are included in the sample
approaches 1.0. Second, the familiarity model is not limited to
cases in which only one city is recognized: It can operate even
when both cities are recognized by exploiting the differences in
echo intensity. Third, the familiarity model does not require ex-
plicit knowledge of cues or cue validities and, in fact, can operate
even in the absence of such knowledge by exploiting the relative
frequencies inherent in the mediator variable.

How do the models compare in the city-size task? Which
models predict that Americans will be better at estimating German
than American city size? Does that empirical finding require that
we accept the suggestion that too much knowledge is bad?

Figure 3 plots the simulation results. Several things are note-
worthy. First, the curves representing the German and American
city ecologies diverge considerably: All three models predict that
American students are better at estimating American than German

relative city size when relying on small to moderate samples.
Second, all three models show a crossover as sample size increases
such that at some point Americans are predicted to be more
accurate at estimating relative sizes of German than of American
cities. Both the familiarity and frequency models show a single
crossover toward the right-hand side of the graph. These are
asymptotic predictions and invariant to increases in sample size. In
fact, the asymptotic predictions for the frequency model actually
correspond to the ecological choice probabilities: The expected
percentage correct if using the newspaper frequencies themselves
(without a sampling process) would be 74.6% for German cities
and 69.2% for the American cities.

The plots for the recognition heuristic model are a bit more
complicated. It is true that the recognition heuristic predicts more
accurate relative judgments of German than of American cities
given moderate sample sizes, which is consistent with Gigerenzer
and Goldstein’s (1996) less-is-more effect. However, there are two
caveats to consider. First, this difference goes away when sample
size is large and when the knowledge validity is relatively high
(e.g., the accuracy for the American cities at B � .85 is almost
always greater than the accuracy for the German cities at B � .85).
Moreover, if we allow B to vary (e.g., to model the reasonable
assumption that people with knowledge of more cities also have
knowledge of cues with higher validity), then the model predicts
the American students (as modeled with B � .85) will always be
more accurate than German students (as modeled with B � .60).
This is a particularly important caveat because it indicates that the
recognition heuristic � TTB model can account for both a mono-
tonic increase or a nonmonotonic (inverted U-shaped) pattern of
results within each ecology. Second, the recognition � TTB model
is a two-process model, compared with the one-process familiarity
model. Thus, the familiarity model can account for the finding that
American students are more accurate at predicting German city
size than American city size, can do so within the context of a
single-process model (as opposed to two), and does not require one
to accept the counterintuitive assumption that too much knowledge
can lead to poor judgment. Ironically, the familiarity and fre-
quency models suggest that the so-called less-is-more effect coin-
cides with two more-is-more curves with different slopes and
asymptotes: Increased experience leads to increased accuracy for
both American and German city-size predictions, with predictions
of German city size having a higher asymptote because of the
ecological correlations.

8 Details of the Minerva 2 model are available in Hintzman’s (1988)
article. The codes used for our simulations are available at http://
www.bsos.umd.edu/psyc/dougherty/ or by contacting either Rick Thomas
or Michael R. Dougherty.

9 Note that this model most closely resembles the assumption that events
are automatically encoded in memory—an assumption explicitly made by
Gigerenzer et al. (1991). We include the frequency model here because it
serves as an ecological benchmark against which to compare the familiarity
and recognition � TTB models.

10 Note that Goldstein and Gigerenzer’s (2002) implementation of the
recognition heuristic did not include a sampling process. Their implemen-
tation was based on recognition performance of a sample of participants
and therefore captures the structure of the ecology (as represented by the
citation frequencies) only to the extent that recognition follows the prob-
ability distribution of the citation frequencies.

208 THEORETICAL NOTES



At a more general level, the simulations presented in Figure 3
demonstrate that the recognition � TTB model is relatively flex-
ible, in that it can predict both a monotonic increase in judgment
accuracy with sample size as well as a nonmonotonic relationship
between judgment and sample size. In contrast, both the familiarity
and frequency models necessarily predict monotonic increases
with sample size, with asymptotic performance determined by the
ecological correlation (these are given as the points to the far right,
with N � infinity, in the bottom panel of Figure 3). It is important
to note that regardless of whether one endorses the Minerva 2
framework, there exist alternatives to the recognition � TTB
model that (a) can account for the main empirical findings com-
paring American’s predictions of German and American city sizes
and (b) do not require the added assumption that too much knowl-
edge can lead to poor inference.11

Summary of Criticisms

We argued that an event-counter mechanism is needed for the
TTB algorithm if one assumes that cue validity is the basis of cue
generation (principally because the validities need to be prestored).
We argued further that such an assumption (as well as others) is
untenable and psychologically implausible. Specifically, data on
frequency encoding does not support the automatic event-counter
mechanism. Rather, the available data suggest that a retrospective
implementation of frequency estimation would make PMM more
psychologically plausible. However, we argued that an event-
counter mechanism is needed if one assumes that cue validity is
the basis of cue generation (principally because the validities need
to be prestored).

Next, we argued that the definition of cue validity is fundamen-
tally flawed. It requires that one record the absence of information
(or nonoccurrences) in the environment using an automatic and
unintentional encoding process. This assumption is logically un-
justifiable, especially in light of the considerable data indicating
that it is psychologically untenable.

Third, we argued that memory retrieval variables are likely to
supersede cue validity as a mechanism for cue generation. The
assumption that cues are generated according to their cue validity
requires that people compute cue validity on missing information,
that the validities are precomputed and stored in a hierarchy, and
that the basis of generation is cue validity. In the absence of having
a prestored hierarchy, validity would have to be computed online,
which would entail an initial retrieval process for generating the
cues before validity could be computed.

Finally, we argued that the implementation of the recognition
principle in Goldstein and Gigerenzer (2002) is flawed. Moreover,
we presented two alternative accounts of the empirical finding that
Americans are less accurate at judging American cities than at
judging German cities, neither of which requires one to accept that
more knowledge leads to less accurate inference.

Conclusions

Two messages can be gleaned from our review. On the one
hand, our analysis suggests a note of caution for consumers of fast
and frugal heuristics, a note echoed in several recent articles
addressing the psychological plausibility of the recognition and
TTB (Bergert & Nosofsky, 2007; Chater, Oaksford, & Nakisa,

2003; Juslin & Persson, 2002; Lee & Cummings, 2004; B. R.
Newell, 2005) heuristics: Although heuristic mechanisms like TTB
and TTL have intuitive appeal, application of these mechanisms as
models of human judgment can be misleading if we do not simul-
taneously scrutinize whether the assumptions underlying the mod-
els are met. Our analysis suggests that several of the primary
assumptions of PMM are flawed, leading us to question the psy-
chological plausibility of PMM and the heuristics proposed by
Gigerenzer and Goldstein (1996). In addition, our analysis sug-
gests that empirical tests on the cue selection process need to
consider how the cue search processes might be constrained (or
even dictated) by the underlying memory processes. It is our
intuition that corroborating evidence for TTB will be hard to come
by once experiments are designed that explicitly control for mem-
ory retrieval variables. Indeed, initial investigations of TTB in
well-designed experiments have shown that it is far from a uni-
versal heuristic (Bröder, 2000; B. R. Newell et al., 2004; B. R.
Newell, Weston, & Shanks, 2003). Whether there will be clear-cut
evidence in favor of TTB once memory retrieval variables are
controlled is an empirical question that needs to be addressed.

On the other hand, we are quick to recognize that any approach
worth criticizing is a worthwhile approach. There is much to
applaud about the fast and frugal program of research. In many
ways, it has moved us closer to A. Newell’s (1973) call for
complete (and integrative) theories of cognition. In Newell’s view,
a complete model of cognition requires that we model the psycho-
logical control processes as well as the memories and primitives on
which the control processes operate. To this we add that one also
needs a model of the ecology. Work on the fast and frugal
heuristics has called attention to two of these three: the control
processes involved with cue search and the importance of the
ecology in shaping the underlying memory representation. Al-
though there have been attempts to integrate ecological models
with memory models (see Dougherty, 2001; Juslin & Persson,
2002; Thomas, Dougherty, Sprenger, & Harbison, 2008), little
work has examined the control processes that guide how people
generate information or cues from memory and how they decide to
terminate memory search (Dougherty & Harbison, in press). Al-
though we view TTB, TTL, and minimalist as psychologically
implausible, we think research on control processes is overdue.

Of interest, most of our criticisms stem from the link between
the ecology and the control processes, a linkage that, in our view,
depends on the memory system and its primitives. Indeed, it is this
link that is not well instantiated within the fast and frugal frame-
work. In the absence of specifying the memory system and prim-

11 The above simulations used sample size as the basis of defining the
reference class: the 83 largest German and American cities. An equally
appropriate way to define the reference class is on the basis of the criterion
variable: all cities with populations above 100,000. There are 83 German
and 195 American cities over 100,000. Not only do simulations based on
this definition of the reference class yield qualitatively different predic-
tions, but also the ecological correlation between city size and citation rates
changes: 
 � .49 (Pearson r � .39) when computed over the 195 American
largest cities, but 
 � .39 (Pearson r � .38) when computed over the 83
German largest cities. Given this result, it is clear that how one defines the
reference class affects the predictions of the model. In some ways, the
definition of the reference class is a free parameter. The results of these
simulations are available at http://www.bsos.umd.edu/psyc/dougherty/
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itives, all-or-none recognition seems like a trivial simplifying
assumption, the definition of cue validity appears justifiable, and
the generation of cues according to validity makes sense. Our
criticisms regarding the definition of cue validity, the use of TTB
as a search rule, and the assumption of all-or-none recognition
become obvious only when one attempts to instantiate PMM and
TTB in the context of a memory model capable of unsupervised
learning. Thus, in many ways, our analysis should be taken as a
paradigm example of A. Newell’s (1973) argument that tight
theorizing requires that models specify the underlying memory
representation and primitives as well as the control processes. In
the absence of specifying these underlying processes, there are few
constraints on the number of potential fast and frugal heuristics
that can be developed and few constraints on their specification.
As a result, one risks a proliferation of heuristic mechanisms that
are either implausible or incompatible with the functioning of the
underlying processes on which they are assumed to operate.

As a final note, we recognize that work on the fast and frugal
heuristics has gone well beyond the original heuristics proposed by
Gigerenzer and Goldstein (1996; see Gigerenzer, Todd, & The
ABC Research Group, 1999). Although the bulk of our specific
comments do not apply directly to the vast majority of these new
heuristics (e.g., the priority heuristic, QuickEst, and the fluency
heuristic, among others), the general criticism that tight theorizing
requires specification of control processes, as well as the memory
system and primitives, does apply.12 As the number of heuristics in
the fast and frugal tool kit grows, it becomes increasingly neces-
sary to integrate them within a common process model to ensure
that they are compatible with the underlying cognitive processes,
the ecological constraints, and one another. Such an approach is
likely to have an enormous payoff in terms of both enabling
predictions of when a particular heuristic will be used and of
moving the approach toward an integrative model of judgment and
decision making.

12 To our knowledge, the only model within the fast and frugal tool kit
to specify the underlying memory processes and primitives is the fluency
heuristic, which is specified within the ACT-R framework (Schooler &
Hertwig, 2005).
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Postscript: Vague Heuristics Revisited
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Although we continue to disagree with Gigerenzer, Hoffrage,
and Goldstein (2008) on a number of points, including the inter-
pretation of data said to be consistent with the use of Take The
Best (TTB), their reply has led to considerable clarity regarding the
underlying assumptions of probabilistic mental models (PMM),
TTB, and the recognition heuristic. Ironically, this new found
clarity has led to more questions about the functioning of their
heuristics rather than fewer and has exposed PMM, TTB, and the
recognition heuristic to the much more damning criticism that they
are nothing more than vaguely specified process models or heu-
ristics. Moreover, Gigerenzer et al.’s (2008) reply expounds some
of the problems with the fast and frugal approach, namely that

there are no constraints on how large the fast and frugal toolbox
can grow. In the subsequent sections, we detail the components of
PMM, TTB, and the recognition heuristic that require specification
and how this lack of specification leads us to conclude that they
reduce to vague heuristics of the sort Gigerenzer (1996) argued
against in his critique of Kahneman and Tversky’s (1996) work.

TTB Does Not Assume an Ordering Based on Ecological
Validity

Gigerenzer et al. (2008) portray our belief that cue validity is the
same as ecological validity as a misconception (see their Table 1).
To be sure, our apparent misconception is not without basis, as
there seems to be a general misuse of the term TTB in the
literature. For example, Dieckmann and Todd (2004, p. 310)
explicitly stated that TTB requires knowledge of ecological cue
validities:

Although TTB is a very simple heuristic to apply, the set-up of its
search rule requires knowledge of the ecological validities of cues.
This knowledge is probably not usually available in an explicit pre-
computed form in the environment, and so must be computed from
stored or ongoing experience.
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